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ABSTRACT

This report considers the estimation errors involved in both discrete and

continuous estimates of certain parameters of a Gaussian random process. For

discrete estimates, the confidence interval concept is used to obtain probabilistic

bounds on the estimation errors. Roughly analogous results are also obtained for

continuous estimates. The bounds obtained are useful for a) determining the accuracy

of an estimate given the value of the estimate and the number of samples used (or for

the continuous case the effective TW s) and, b) for determining roughly the number of

samples required (or the effective TW s) to provide an estimate of a specified accuracy.

The bounds are presented graphically and examples of their use are given.

A second result is the derivation of an approximate, but convenient and reasonably

accurate method for evaluating the non-central t-distribution by means of tables of the

normal distribution. This allows certain calculations to be made that are not now

possible with existing tables.
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I. INTRODUCTION

In many applications it is important to estimate certain parameters of a random

process such as its mean or variance. For practical reasons these estimations must be

based on finite data records and thus are subject to random errors. This report is

concerned with the magnitude of these errors when the process may be considered to be

stationary and Gaussian.

Two methods of parameter estimation will be considered in this analysis. First,

estimates based on n independent samples of the process will be investigated. Probabil-

istic bounds on the estimation errors will be obtained through the use of the confidence

interval concept. Secondly, estimates based on a continuous time average will be

considered and corresponding probabilistic error bounds obtained.

I. DISCRETE ESTIMATION ERRORS

Denote the n samples on which the estimate is to be based by xl, x2 , -- xn, the

true value of the parameter to be estimated by e, and the estimate of e by

e= (xI , x2 , -- xn). Assume that the only unknown parameter in the known

distribution of the independent, identically distributed xi is e and denote the

corresponding density function by pl(x;e). Then the density function for Cp2(6;9),

may be determined as a function of the unknown parameter e. The question then arises

as to whether or not p2 (e;e) can be used to make a probabilistic statement concerning

the value of e given a value of e. The answer to this question involves two fundamentally

different concepts depending upon the nature of e in the process being sampled.

These concepts are discussed in the following paragraphs.

Consider first a situation in which a large number of random processes are

available each having a different value of e. An estimate of 0 is to be obtained by

first randomly selecting a particular process and then taking n independent samples

of a sample function in this process. After calculating 6 from these samples it is

desired to make a statement of the type Pr { a < e < b} = I - c, where 0 < c < 1).

For this situation such a statement is readily obtained by considering e to have a

known density function p(e), noting that p2 (B;O) is the conditional density of 6 given

0. and applying Bayes' theorem (1] to obtain



b
P {a<e<b } = f p(e/e)de
r

a

where

p2(§;e) p(e)
p )2 (e;e) p(e) de

Note that this is just the conditional probability of a < e < b given a value of e.

In general p2 (e;() will Involve n, the number of samples, in such a way that

witha<e andb>6

lia P {a<O<b} = 1r
n.-

while simultaneously b - a is approaching zero. Thus, this approach allows a

probabilistic statement to be made concerning the error in estimating e by 0 when

n is specified and converselyallows n to be determined to give a specified error.

Usually, however, estimates are to be made using samples taken from a sample

function of a single process in which the parameter E is an unknown constant. In this

case p(O) = 6 (0 - c ) (where c is the unknown constant value of e and 6 (x) is the unit

dirac delta function) and the above method leads to the meaningless result

P{a<ecb} = r1 if a<e<b
Oif e <aore>b

Consideration of this problem has led to the development of the theory of

confidence intervals by J. Neyman ] The following paragraphs discuss this theory

as it applies to the analysis of this report. w

In the density function p2 (; 0) defined above substitute an arbitrary number,

say 0', for the unknown parameter 0. p2 (0;o') is then completely defined and

probability statements of the type

2.



Pr{ 6< p} < f p2 (4;e')d 6 1- (1)
V

with
'V

f p2(;e')d A I

f p2 (6;e') d - e

P 21

may be inferred for any value of e'. Now, as e' and/or c is varied in these

expressions v and P will vary. Thus y - v(e', e) and P - P (e', e). Assumingy and

P to be monotonic functions of e' these may be plotted in the (, e' plane as shown

below.

I 7(e'; c)

I I-
IV

SI
SI

I/ I

I I

ee,

G e1 e e 2  e",

With e' 0, the true value of the parameter to be estimated, and 0 0', a

value of 0 determined from O(xl -- Xn) and n specific sample values, consider the

relations

3.



(a) v< 6' <p; (b) eI < e < e2

where v, Y2, 02 are defined by the values of eande' as indicated above. Now,

for any particular e, the above plot shows that a value of 0' satisfying relation (a)

also satisfies relation (b). Conversely, if e' satisfies (b) then (a) is satisfied. From

this the important conclusion is drawn that the statement -Y < 0' < 1 is completely

equivalent to E < e < e2 and thus that

{' <P } = e {e < e< e2 = 1- (2)

It is in the interpretation of this statement that the difference between this approach

and that using Bayes' theorem becomes apparent.

From the above graph it is observed that

' #(e1,) = (e2, )

Thus 01 and e2 are random variables whose value depends upon the values of the n

samples used to obtain the estimate i' . In words the above probability statement thus

becomes "the probability that the random interval [ e1 , 02 1 will cover true

parameter value e is 1 - ". This is to be contrasted to the Bayes' theorem statement

which reads " the probability that the random variable e lies in the fixed interval

[a,b] is 1 - e.

In general, DI and e2 will be functions of n in such a manner that

lim P{e < 0 <2 } 1

Thus, for a given c and u it will be possible to make a probabilistic statement concerning

the estimation error by the a priori statement: "before the n samples are taken the

probability that the interval constructed using these samples, (i.e. [ l, e2 1 where

6' = p(e1, ) - y(e2, c)covers the true parameter value 0 is 1 - c.

4.



Since the values e I and 0 2 are random variables the interval will also be a

random variable from one set of samples to the next. However, when n is sufficiently

large to give useful estimates, the length of the interval varies by a negligible amount

from sample to sample. Because of this it is possible to obtain an accurate indication

of the magnitude of the estimation error that will be exceeded only 100 e % of the time.

The interval: [Gl, G2] is called the confidence interval for the parameter e,
01 and 02 are called the confidence limits, and 1 - e the confidence level. The following
paragraph describes a general method for determining the confidence limits and thus

the confidence interval, for a given confidence level.

From above, y (G', c) is defined by

fJ p2 (6 ;G')d6 - cl

where i, and p2 (6;e') are specified. Also, from the graph 02 Is the value of 9' in

7 (e', ) which makes y a 6'. Thus, the upper confidence limit 0 2 In the value of

0' in P2 (6 ; 0') such that

£ p2 (6 ; 0') d - (3)

In an analogous manner the lower confidence limit 01 is the value of e in p2 (G; 0')

such that
go

p 2p2(G;e')do " C-C 1  (4)

where 1 - a is the desired confidence level, typically 0. 95 or 0. 99. Clearly, the

length of the confidence interval, G2 - 0, will depend upon cI and will have at least

one minimum for 0 < c I < c. In general, however, it is quite difficult to determine this

extremum and the usual practice is to take t1 4 a/2 which is the optimum value when

P2 (0; ') is symmetric in 0 and 0'. Following this procedure e and 2 are given

by the implicit relations

5.
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fe" p2 (6;e2)d -C/2 (5)
-0,

or in more convenient notation

{I 6<e^' I e2 } -/2 (5a)

and

, (0; el) d c/2 (6)P2

or

P r {> e cO} /2 (6a)

Note that Eqs. (5a) and (6a) are not conditional probabilities but are simply shorthand

statements for the previous equations.

1. Confidence Intervals for Probability of Error

In this section confidence intervals for the estimation of probability of error

will be derived by considering the n samples to be drawn independently from a

discrete random variable having the binomial distribution. In all of the remaining

sections the samples will be assumed to be normally distributed.

Consider the occurence of errors in a digital receiver to be independent from

baud to baud and define a random variable x by

x - 1 if an error occurred in a given baud,

x a 0 if no error occurred in a given baud.

The following relations are then readily determined.

P(x)-(Pe(1-P) xin0, 1 (7)

6.



and

npe) iP e n(1Ie~
F (Pe) r (Fe) (1- Fe) Fe=-. , - . n (8)

n n " n

where

(ne) n
n nf) (n 9): (n -n Pe)'

Pe - true probability of error

Fe - estimate of Pe

1 n number of errors in n bauds
ni- n

The xis are n independent samples of the random variable x of Eq. (7).

Analogous to Eq. (5), 121 the upper confidence limit Pe2 is the value of Pe such

that

Z0 (nnpe) (Fe) (1- Pe) < 2 (9)
Pe=O(nfl2

Similarly the lower confidence limit Pe1 is the value of Pe such that

Ie n ) 4?e)nP (1 _ Pe)n(l "e) < c

Reference [41 gives confidence intervals determined from Eqs. (9) and (10) that are

useful for e > 0.05 and for n " 10, 15, 20, 30, 50, 100, 250, and 1000. Usually, how-

ever, the values of Pe of interest are less than 0.05. Since tables of the binomial

distribution are not available for Pe< 0.01 and n > 1000 the normal approximation to the

binomial distribution has been used. With 0 < a < b < I this approximation is [5]

7.



where)(P5 f Pe (1 PL- ' - /1 1 e- 1/2t 2 dt (11)
N=a

where

a-Pe
I (Pe(i - Pe)/li '

L b-Pe
I [Pe (I -Pe)/A 

1/ 2

The error in Eq. (11) is such that the normal approximation is small by a negligible

amount when n Pe (1 - Pe) > 25. Thus from Eq. (9) Pe2 must be such that

C I U2 e 1 / 2 t2dt (12)
L 2

where

P'e - Pe2
u2 =[Pe-2 (I -P2)/n 1/2

L- -Pe2 1L2 = i'2 0 - Pe2)/n.] /

Under the conditions n Pe2(1 - Pe) > 25 and Pe< 0. 1

L 2 - -41P 2  < -5

Thus with these restrictions on n and Pe 2 , Eq. (12) can be approximated by

C I f U 2 e'l/2t 2
U2 0102t 2 dt (13)

8.



Introducing similar approximations into Eq. (10) shows that Pei must be such that

2 7-r d t (14)

where

Ld Pe - Pe

SPe 1 (1 - Pe )/n]1 f

With K C defined by

4I' K -1/ t d t (15)

These relations for Ne and NL become

2 e - 16

Pei (1-N 2 )/Vn]F/2

Using again the conditions n Pe (1-Ne) > 25 and NL < 0. 1 yields the final results

Ne2 =Pe' (1+ Kj xi4l/ ~ (16)



These results are plotted in Figures 1 and 2 for c • 0.05 and 0.01 respectively

and examples of their use are given in Section 11-5.

2. Confidence Intervals for Noise Power

The estimate of the noise power N0 is given by

2 1 n 2
0 n- -i - , (xi  (17)

if i

where
n

i11

It is known (2] that the quantity ( (1 - 1) is distributed by the chi-square distribu-

tion with (n - 1) degrees of freedom i.e.,

p(X 2) -I 1I) (2)- (1-1)/2 (x )/2 e-4/* 2  (18)

2

where > 0

2 '-2R2W =  (n - 0) .-- (--- 0

0

Now, from Eq. (5) the upper confidence limit N o2is the value of N 0such that

f 1I (19)
0

In 1 6] it is shown that the distribution for X is approximately Gaussian with mean
1

n - 1 and variance 1 for n as small as 5. Thus Eq. (19) can be approximated by

U4

fU 4 e"1/2 t2 dt = (20)

10.



where

With K as in Eq. (15) the final expression for No2 is thus

N = , ( 1- _K_ ]-2 (21)
o2 0 f(.1o' 4(n - _1Y

Similarly the lower confidence limit is found to be

N = Iq, I + K ]-2 (22)ol o '2 (n - 1) I

For n > 30, the error in these confidence limits due to the approximation of Eq. (20)

is less than 1%. Figure 3 presents these results graphically.

3. Confidence Intervals for Signal Power

The maximum-likelihood estimate of the signal power S is [ 1]
n2

s=( )2 = E x i

From Eq. (6a) the lower confidence limit So0 must be such that

SI So < SoI Sol = - c/2 (23)

Thus since can be negative, Eq. (23) becomes

Pr re- < ; < ' I } 1 - c/2 (24)
0 o

11.



It is known (21 that

t -

is distributed by the t-distribution with n - 1 degrees of freedom. Thus S is the

square of the value of A such that

= p(t, n- l)dt (25)
2 f

L5

where

us " I

p(t, n - 1) = the central t-distribution with n - 1 degrees of freedom

To simplify this implicit relation for 1 rewrite Eq. (25) as

U5  L5f p(t, n- l)dt + f p(t, n - l)dt 2- c/2 (26)

Since this expression is even in I, A > 0 are the only values of interest.

Requiring 41w' / &' > 5 and n > 10 makes the second integral in Eq. (26)

equal unity to four decimals. Under these conditions Eq. (26) can be replaced by

f U5 p(t, n - 1)dt - I - C/2 (27)

12.



Defining t C(n) by

f p(t, n-I) dt = 1-e/2 (28)

gives for the lower confidence limit

So ' (29)

o, 0 -n

A similar procedure gives

So2  S Lo (30)

where

For n > 120 the t-distribution is closely approximated by the normal distribution with

mean zero and variance unity. Thus when n > 120, t (n) m K. may be used in Eqs. (29)

and (30). Figures 4 and 5 illustrate these results.

4. Confidence Intervals for Signal-to-Noise Ratio

The estimate of the SNR, p, is defined by

p_ I u/a]2 m §o0Mo

Thus from Eq. (6) the lower confidence limit p, must satisfy

Pr < < p-1 I -c/2 (31)

or, since IA can be negative,

r - P 1 - d /2 (32)

13.



Now, the quantity

6=

where

W &2

is known [7] [ 8 to be distributed by the non-central t-distribution with n - 1 degrees

of freedom. Thus p1 is found by determining a value of 6 such that

p(t, 6, n - 1) dt = - e /2 (33)

where p (t, 6 , n - I) is the non-central t-distribution with n - 1 degrees of freedom.

Unfortunately, tables of the non-central t-distribution are not suited for calculations

of this type since trial and error determination of 6 is involved. This difficulty can

be circumvented in the following manner.

With the above definitions of t, 6 , and w, and defining 61to be the value of 6

satisfying Eq. (33), Eq. 02) can be rewritten as

Pr q.n-, z+6 1  < } - - /2 (34)

or

P1 +P = 1-c/2 (45)

14.



where

PI = Pr{-z N 4w <61 <-z+ n Jwi j4 w->O}Pr w->0}

P2 = Prf-z+ 4-74-w<6 1 < -z-N fn %woI {I <0} 0

(At this point it is convenient to ignore the fact that Pr {w-< 0 = 0, so that the

following discussion may be simplified. This fact will be reintroduced at a later point.)

Now, using the joint density function for z and 4w, P1 and P2 can be found by

integrating this over the regions of the z, Jw plane indicated below.

-61 z

61

However, the difficulty in evaluating this double integral for general n makes it

convenient to determine these probabilities in the following manner. Let

x m-M  -z +f- n n'p' %r-

y-- -z+4i --

It is known [2] that z is normally distributed with mean zero and variance unity, and

that (from Sect. 11-2) 4w is approximately normally distributed with mean unity and

variance (2(n- 1)]-. It is also known that the normal approximation

15.



for the distribution of NJw is quite accurate even for small n and that z and '47 are

statistically independent [ 21. Therefore the distribution for -x and y is even more

accurately approximated by the normal distribution with meannp and variance

1 + n P' [2 (n - 1)] 1. Thus, this approximation allows probabilities such as

Pr {x < X } or Pr I y < Y } to be accurately determined using tables of the normal
distribution. It will now be shown that Pr { x < 61 } -P 1r 1 y < 1 1 MP " P2, when

P and P2 are as previously defined, and thus that the normal distribution may be used

to evaluate Eq. (33).

Thinking again in terms of the joint density function for t andwS, Pr{y < Y}

would be obtained by integrating this over the region in the t , 4rw' plane below.

Similarly P 1 x < Y} would be obtained by integration over the following region.
r

From this, with Y 6 it follows directly that Pr I x < Y}- Pr {y <Y} -P I P 2

which was to be proved. Now, from.Eq. (35) P2 -P r {JN< 0 }. However, it is

16.



known that Pr I w< 0} = 0. Therefore if the normal approximation to the distri-

bution of rw is to be accurate P { 4w'< 0} calculated from it must be negligibly small.

Requiring [2(n-1)] -1/2 < 1/4, or equivalently n > 9, makes Pr {4w< 0} and thus

P2 less than 10" . With this restriction on n, Eq. (35) becomes, with negligible

error,

Pr{X < 61} - Pr{y <61} = 1 - E/2 (36)

Introducing the normal distribution and recalling that 62 = n p1 , Eq. (36) is evaluated

as

I _ f. 6 e I t dt - _ I . 6 e -/ dt 1 1 - /2 (37)

where

U6 - {1+n' [2(n-)]-l} / 2

U7 = {1+np' [2(n-1)]'}'1/

Since 2- - 0 the requirement

il+p' [2(n-1)]

or approximately

n>8 [1+ 2

makes the first integral in Eq. (37) equal unity to 4 decimals. Therefore, under the

double restriction

n>9

n>8 [+ 2.]

17.



the lower confidence limit P, is found from

S U7 e1/2 t2  -
f e dt- (38)

In terms of K as previously defined the solution is thusC

4 1+n' [2(n-l)] "1 '

or [TI -_n
P- ,' + (Le1) (39)

A similar procedure shows that

- (n- 1) (40)

Figures (6) through (9) present these results graphically.

5. Examples

a) The output of a digital receiver is observed for 6.0 x 104 bauds, ,and 24

errors are observed.

n = 6.Ox 10

Ae= 4x10 4

From Figure 1. 2.4 x 10- 4 < Pe < 5.6 x 104 with a confidence level of 95%.

b) It is desired to measure a probability of error which in expected to be about

10. 3 with a confidence level of 95% and a confidence interval of + 10% of the measured

value. How many samples should be used? From Fig. 1 a measured value of

18.



Pe = 10- 3 with n - 4 x 105 samples would have the desired confidence level and

interval. Therefore an approximate sample size of 4 x 105 should be used. Note,

however, that the actual confidence interval must be determined after PL has been

measured.

c) A sample of n = 1000 gives

S' =1.0
0

' =-4.0
0

= 0.25

From Figs. 4, 3, and 6 respectively the 95% confidence intervals are

0.77 < S < 1.26

3.68 < N < 4.4
-0-

0.21 < p < 0.33

d) It is desired to measure an unknown noise power to within approx-

imately + 10% at a 99% confidence level. From Fig. 5 a sample size of 1. 7 x 103 gives

a confidence interval of + 10%, - 9% for any value of

e) As a less trivial example of the use of confidence intervals, consider

the problem of evaluating a low data rate binary communication system having the

following theoretical performance characteristics.

Pe = 1 -- o (41)

-1
SNR= P[I+1/2P] Pa-0 (42)

where P = = Signal energy per baud at receiver input
No  Noise spectral density at receiver input

19.



The system is to be evaluated by measuring either P or SNR and calcu-
e

lating an "effective" 0 from Eq. (41) or (42) respectively. Comparison of the calculated

0 with the value actually used in the test gives an indication of the departure of the system

from ideal operation. The question arises as to which of the two measurement methods

provides the desired measurement accuracy with the least number of samples. The

following analysis demonstrates that for small P the two methods are approximately

equivalent while for large P the number of samples required for SNR measurements is

less, by several orders of magnitude, than the number required for P measurements.

Assume that the probability of an error is independent from baud to baud,

that the noise component of the samples used in calculating SNR is independent from

baud to baud, and normally distributed, and that the desired accuracy for the calculated

"effective" # ($) is + 100 o% at a confidence level of 100(1- c)%. Then, Eq. (16) shows

that the number of samples used for P measurements must be at least as large as the
e

largest value of n satisfying the relation

1e + e- (43)
e C EC 2

where e -

e 2

For a given P', e, a this equation can be solved for n. Choosing the sign

yielding the largest n gives the following conservative result.

n>- 2K2 e[l[e a -2 (44)
C

This result is plotted in Fig. 10 for values of a corresponding to errors

in$ of+ 0.2 db and +0.4 db.

20



From Eqs. (39), (40) and (42) the number of samples used for SNR (p) measure-

ments must be at least as large as the largest value of n satisfying

- n ' 2(n-1) ] = 2(+) [ +oji+) (45)

wherep' =i[1+ 1

Now, for > 2

2, 1 oli[1+2 (j_+) J] z 1

Similarly for n > 1000

,+ I+ ._ +
- Jp 2(n-1) ]In P

Thus for P > 2 and n > 1000 Eq. (45) becomes approximately

PI _rn' g + - ,+

Solving this for the largest value of n gives

1 1 ( )

Fig. 10 illustrates this result for errors in f of + 0. 2 db and + 0.4 db.

Heuristic reasoning suggests that due to the small noise variance at high SNR

(and thus low Pe) it should be possible to measure 0 via SNR with relatively few samples

as compared to measurement via Pe . Fig. 10 provides a striking confirmation of this

conjecture and demonstrates that for P > 2 a given accuracy can always be obtained with

21.



fewer samples via SNR measurements. Even more important, however, is the fact

that for 0 on the order of 10 or greater (corresponding to P < 10"5) the reduction in
e

sample size is several orders of magnitude. This fact coupled with accurate knowledge

of the measurement accuracy for a given sample size allows meaningful evaluation of

system performance with an absolute minimum of samples.

III. CONTINUOUS ESTIMATION ERRORS

This section is concerned with the errors involved in the estimation of the mean

square value of an ergodic Gaussian random process. The continuous and time-varying

estimate considered here is obtained from a finite time average of the square of a sample

function of the process. A true RMS voltmeter is an example .of a device utilizing this

method of measurement; the meter indicates the instantaneous output of a low pass filter

that provides the weighted time average. Due to the finite averaging time (or equivalently

the non-zero filter bandwidth) the estimate varies with time; the rate of variation being

inversely proportional to the bandwidth of the process. The following analysis will

obtain probabilistic bounds on the magnitude of these variations that are roughly analogous

to the confidence interval relations for discrete estimates discussed in the previous

section.

Consider the following circuit which provides the estimate described above.

s(t) f eo(t) estimate of sW (t)

From the Superposition Integral it follows that

e0(t) = f s2 (T) h(t-'T) d'r
- so

Thus the average value of eo(t) (either ensemble or infinite time) is

22,



0T

E [eo(t) =  E [f s 2 (r) h(t-'T) dr]

f E[s 2( ")J H(O) = R(O) H(O) (47)

Assuming that H(t) is normalized (i.e. H(O) = 1) this demonstrates that the average

value of the estimate is equal to the mean square value of the input signal. However,

due to the finite filter bandwidth, eo(t) will vary about its mean value. These variations

are most conveniently investigated by determining the variance of eo(t).

By definition

2 2 2 2Var [eo(t)] = E(e2(t)] - E[eo(t)]I = eo (t) - R (0)

Since s(t) is assumed to be Gaussian it is known that (9]

60

2 (t) = f Si(f) IHif) 12 df
00

where

Si(f) R2 (0) 6 (f) + 2 f SIf ) S(f-f') df-

6 (f) = unit impulse function

S(f) = power spectral density of s(t)

Thus

Var [eo(t)I 2 = 2 f f S(f')S(f-r) I H(f)1 2 df- df (48)

or, equivalently

2 = 2f f IH(f)12 eJ 2 rfT (T) d rdt (49)

where

R(T) = R(-r) f S (f) ej 27vf r dT (50)

23.



Thinking in terms of the RMS voltmeter, a convenient method for using this

variance to indicate the estimation error is to specify in db (relative to the average

reading) the value corresponding to three standard deviations above the average reading.

Let this estimation error or deviation parameter be denoted by D. Then from above

D = 101og 0 [1+ 3-] db (51)

For D to be small it is necessary that the filter bandwidth be narrow with

respect to the signal bandwidth. However, under this condition the filter output is

approximately Gaussian. Thus for small D the meter reading will be within + D db

of the correct value more than 99% of the time. Considered in this manner, D is

roughly equivalent to the confidence interval for noise power discussed in the preceding

section.

Due to the difficulty in evaluating Eq. (48) for arbitrary S(f) and H(f) it is

desirable to provide an upper bound to Eq. (51) that does not involve the double integral

of Eq. (48). This is readily accomplished as follows. The inner integration of Eq. (48)

is the convolution of S(f) with itself. Let the resulting spectrum be SI(f). Then from

the Schwartz inequality it follows that *

SI(f) < Sl(O) f #0

2Thus ar can be upper bounded by
2 i.0 f,

2  
i

a <2SI(O) f 1H(f)[2df = 2 f S2 (f) df f IH(f')12 df' (52)
.40 -0

* By definition Sl(f) = f Sif) S(f-f) df',

and

Sl(0) = f S2 (f) df = L S2(ff') df'

Thus from the Schwartz inequality

L S(f) S(f-f') df' ]S2 (f)s2(f,) df' f-sZ(f-f')df'
-40

where the equality holds if and only if S(f') = S(f-f'}, i~e. when f0. It should be noted,
however, that physical reasoning shows that Eq. (52) will introduce negligible error when
the bandwidth of S(f) is much greater than that of the filter.
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Since H(f) is assumed to be normalized the second integral in Eq. (52) defines the noise

bandwidth W of the filter. In this discussion it is convenient to define the "effective
n -1

integration time constant" of the filter by T'(2Wn) . Then an upper bound for (aI/) 2

can be written as

a2 < f S2 (f) df (53)
<T T [fS(f)dfl]

Define a signal " noise bandwidth" by

j0 S(f) df (54)
S = max S(f)

Then Eq. (53) can be written as

2 T r S(f) 2
'A SS w2 Lmax S(f) df

Now, S(f) is by definition a non-negative function. Thus it follows that

rm5(f) 12 S(f)

[max S(f)J max S(f)

and therefore that

fm__ df 5 WS (55)

Substituting this result into Eq. (53) yields

2
a T1 (56)<TW S

and thus from Eq. (51)

D < 10logl0 [ 1+3(-L)1/2S db (57)

with H(O) = 1, where WS is defined by Eq. (54) and,

T I o IH(f) 12 dfl' (58)
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Eq. (57) is plotted as curve I in Figure 11 along an exact expression derived in the

example below. These curves indicate that Eq. (57) provides a convenient and sufficiently

accurate method for determining the required filter "integration time constant" Twhere

a spectrum shape and a measurement accuracy are given.

Example 1

Let

H(f) - [1+j2rTf]
1

s(f) - I Il < W

0 IfI >W

Consider first the exact calculations via Eqs. (47), (48) and (51).

I= f S(f) df = 2W

U2 2 f "f (f') S(f-f') IH(f)12 df df'

-00 -40

4. f2 2W-f] df
=4f i1+41r2T~f z

0 1

4W - 1 16r2T2 W2=I Tal4irT 1 WJ" 2ir 2  In [I+liTW

1 11wzT 1

D 10 log 1 0 [1+3-p]

= 10l0g1 0  1+3 rT Tan 1[4TiW- 2 22TW In +16,12W2 J 1/21

(59)

For TW > 10 Eq. (59) becomes, with negligible error,

D =10 og +3 FT1 )1/2lD = 10log1 0 [j+ 3 (2 )IW  db (60)

1



The upper bound of Eq. (57) is evaluated for this example as
1 ti/2

D 10log 10 11+ 3 (( ) 1 db (61)
5

where o-1

T= [2 f 0H(f)12 df l

1 -1

=[2f 1+47r2 T f df]

T1

W$= f S(f) df= 2W

Thus the upper baud of Eq. (61) and the asymptotic expression of Eq. (60) are

identical when S(f) is a rectangular spectrum. This is in complete agreement with the

approximations used in deriving Eq. (58).

Example II

Let

S(f) = [l+(rf2W) 2 1"

H(f)= [l+j27rTIf J
1

The exact analysis gives

=f S(f) df = 2W

R(T) = " S(f) ei2w df = 2We4WII

From Eq. (49) the variance is
60

=2 . RH(")2r'l
a 2 2 R(r) R2(7) d2
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where

RH(T) -- f. H(f)j 2 e'Jf" df

For this H(f)

RH('r) = - j- e"T

Thus
a2  8 W2 f * 8Wexp- [ + I T dT

T 00

8W2

8WT+I

and

D =10 logl 0 +3( 2 11/23 db (62)D =I0 ~go + [8WT+I d

For TW > 10 Eq. (62) becomes, with negligible error

=10logl [ 1+3 4W T db (63)

Evaluating T and WS for the upper bound gives T = T and WS = 2W. Thus theS I S

asymptotic expression, Eq. (63), differs from the upper bound by a factor of 1 under
2

the radical. For large TW this results in a negligible difference between the
S

respective values of D. Eq. (62) is plotted vs TWS as curve 2 in Fig. 11.

IV. SUMMARY

In this report the statistical concept of confidence intervals has been applied to the

problem of obtaining probabilistic bounds on the errors arising when a finite number of

samples are used to estimate the following parameters of a Gaussian random process.

a) the squared mean--called signal power,

b) the variance -- called noise power,

c) the ratio of squared mean to variance--called SNR,

d) the probability that the sample value exceeds an arbitrary threshold- -called Pe.
e

28.



These results are useful in evaluating digital communication systems by providing

information as the accuracy of test measurements and by allowing tests to be designed

to provide the required accuracy with a minimum of data. An example has been given

in which the use of these results allows a reduction, by several orders of magnitude,

in the amount of data required to obtain a specified accuracy.

A bound roughly analogous to the confidence interval for the discrete estimate has

been obtained for continuous estimates (e.g. an RMS voltmeter) of noise power. The

bound is a function only of the noise bandwidth of the averaging filter and of the signal

and is shown to be quite accurate when the measurement accuracy is reasonably

small (< 0. 5 db).
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CAPTIONS

Fig. 1. 95% Confidence Intervals for Probability of Error

Fig. 2. 99% Confidence Intervals for Probability of Error

Fig. 3. Confidence Intervals for Noise Power

Fig. 4. 95% Confidence Intervals for Signal Power

Fig. 5. 99% Confidence Intervals for Signal Power

Fig. 6. 95% Confidence Intervals for SNR

Fig. 7. 99% Confidence Intervals for SNR

Fig. 8. 95% Confidence Intervals for SNR

Fig. 9. 99% Confidence Intervals for SNR

Fig. 10. Comparison of Measurements via P and SNR
e

Fig. 11. Estimation Error for the Continuous Estimate of the Mean Square Value of

a Random Process.
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